R16

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY: PUTTUR (AUTONOMOUS)

B. Tech II Year I Semester Supplementary Examinations June 2019

ENGINEERING MATHEMATICS-III

(Common to All Branches)

Time: 3 hours

8

Max. Marks: 60M

(Answer all Five Units	5 x 12 = 60 Marks)				
UNIT-I					

1 a Show that the function $f(z) = z + 2\overline{z}$ is not analytic anywhere in the complex plane. 5 M b Find the analytic function f(z) = u + iv whose real part is given by $u = a(1 + \cos \theta)$ 7 M

OR

a Evaluate
$$\int_{0}^{3+i} z^2 dz$$
 along (i) the line $y = x/3$ (ii) the parabola $x = 3y^2$
b $= 1$ for e^{-z} for e^{-z} for $x = 1$ for $x = 1$ for $x = 1$ for $x = 3y^2$

Evaluate
$$\iint_{c} \frac{e^{-z}}{z+1} dz$$
, where c is the circle (i) $|z| = 2$ and (ii) $|z| = \frac{1}{2}$ 6 M

UNIT-II

3 Show that $\int_{0}^{\pi} \frac{1}{a^2 + \sin^2 \theta} d\theta = \frac{\pi}{a\sqrt{1+a^2}}, (a > 0)$ by using residue theorem. 12 M

- **4 a** Find the bilinear transformation which maps the points (-1, 0, 1) in to the points 6 M (0, i, 3i).
 - **b** Prove that the transformation $w = \sin z$ maps the families of lines into two families of 6 M confocal central conics.

UNIT-III

5 Compute the real root of the equation $x \sin x + \cos x$ by Newton-Raphson method which 12 M is near $x = \pi$.

OR

6 a Use Newton's Backward interpolation formula to find f(32) from the following table 6M

Х	25	30	35	40
f(x)	0.2707	0.3027	0.3386	0.3794

b Using Lagrange's interpolation formula, find the parabola equation passing through 6M the points (0,1), (1,3) and (3,55)

UNIT-IV

7 **a** Fit the equation of the curve $y = ae^{bx}$ to the following data. 7 M

v 7 11 17 27	Х	1	2	3	4
	у	7	11	17	27

Evaluate $\int_{0}^{4} e^{x} dx$ by Simpson's $\frac{1}{3}$ rule with 10 subdivisions.

a Fit the curve of the form $y = a h^{x}$ for the give date

6 M

5 M

		y = a b	tor the g	ive uata			0 1 1
	Х	2	3	4	5	6	
	у	8.3	15.4	33.1	65.2	127.4	
b Evaluate $\int_{0}^{1} \sqrt{1 + x^3} dx$ taking h =0.1 using Trapezoidal rule.					6 M		

Page **1** of **2**

UNIT-V

- 9 **a** Using Taylor's series method to solve the equation $\frac{dy}{dx} = x^2 + y^2$ with y(0) = 0 and 6 M obtain the value of y when x = 0.4.
 - **b** Solve $\frac{dy}{dx} = \frac{y-x}{y+x}$ with initial condition y(0) = 1 by Picard's method and compute the value of y(0.1).

OR

- **a** Solve $\frac{dy}{dx} = \frac{2y}{x}$ with y(1) = 2 by Euler's method and compute the value of y(2). 6 M
 - **b** Apply the fourth order R-K method to find y(0.1) and y(0.2), given $\frac{dy}{dx} = xy + y^2$ with y(0) = 1.